Exercise 77

For what values of a and b is the line $2 x+y=b$ tangent to the parabola $y=a x^{2}$ when $x=2$?

Solution

Rewrite the equation for the tangent line.

$$
y=-2 x+b
$$

We see that the slope is -2 . Take the derivative of the equation for the parabola.

$$
y^{\prime}=\frac{d}{d x}\left(a x^{2}\right)=a \frac{d}{d x}\left(x^{2}\right)=a(2 x)=2 a x
$$

When $x=2$, the derivative must be equal to -2 .

$$
\begin{equation*}
y^{\prime}(2)=2 a(2)=-2 \tag{1}
\end{equation*}
$$

The tangent line intersects the parabola at $x=2$, so the equations that represent them are equal when $x=2$.

$$
\begin{equation*}
\text { At } x=2: \quad a x^{2}=-2 x+b \quad \rightarrow \quad a(2)^{2}=-2(2)+b \tag{2}
\end{equation*}
$$

Solve equations (1) and (2) for a and b.

$$
a=-\frac{1}{2} \quad b=2
$$

Therefore, $2 x+y=2$ is tangent to the parabola $y=(-1 / 2) x^{2}$ when $x=2$ as the following figure illustrates.

